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1. Introduction

Generalized Kahler geometry has aroused considerable interest both among string theo-
rists and mathematicians, e.g., [[]-B]. Recently, several groups have tried to construct
quotients [[|—[; however, it is unclear how general or useful the various proposals are.
Experience has shown that supersymmetric o-models are often a helpful guide to finding
the correct geometric concepts and framework for quotient constructions [f, fl]. In this
paper, we take the first step in this direction; further results will be presented in

The basic inspiration for our work is the interesting duality found in [, [J]. As was
shown in [E, , T-dualities arise when one gauges an isometry, and then constrains the
field-strength of the corresponding gauge multiplet to vanish. Here we address the question:
what are the gauge multiplets corresponding to the duality introduced in [[], [[2]?

In section 2, we analyze the types of isometries that arise on generalized Kéhler geome-
tries which are suitable for gauging, and describe the corresponding multiplets in N = (2, 2)



superspace. In addition to the usual multiplets with chiral or twisted chiral gauge parame-
ters, we find two new multiplets: one with semichiral gauge parameters, which we call the
semichiral gauge multiplet, and one with a pair of gauge parameters, one chiral and one
twisted chiral; the last has more gauge-invariant components than other multiplets, and
hence we call it the large vector multiplet.

In section 3, we describe the N = (1,1) superspace content of these mulitplets; this
exposes their physical content. We describe both multiplets and their couplings to matter,
and discuss possible gauge actions for them. The component content of the various N =
(1,1) multiplets that arise is well known.

Throughout this paper we follow the conventions of [[[4].

2. Generalized Kahler geometry: N =(2,2) superspace

Generalized Kéhler geometry (GKG) arises naturally as the target space of N = (2,2)
supersymmetric o-models. As shown in [[[4], such o-models always admit a local description
in N =(2,2) superspace in terms of complex chiral superfields ¢, twisted chiral superfields x
and semichiral superfields X, Xg [[§]. These models have also been considered in N =(1,1)
superspace [Ld, [[7].

These geometries may admit a variety of holomorphic isometries that can be gauged
by different kinds of vector multiplets. We now itemize the basic types of isometries.

2.1 Isometries

The simplest isometries act on purely Kahler submanifolds of the generalized Kéahler ge-
ometry, that is only on the chiral superfields ¢ or the twisted chiral superfields y; for a
single U(1) isometry away from a fixed point, we may choose coordinates so that the Killing
vectors take the form:

ko =i(05— 03) »  hy = i(d — Dy) (2.1)

In ([, [J], new isometries that mix chiral and twisted chiral superfields or act on
semichiral superfields were discovered; we may take them to act as

kgx = i(0p — 05 — O + %), (2.2)
krr = (0L — 0r — Or + 0g), (2.3)
where 07 = %, etc. Omne might imagine more general isometries that act along an

arbitrary vector field; however, compatibility with the constraints on the superfields (chiral
and twisted chiral superfields are automatically semichiral but not vice-versa) allows us to
restrict to the cases above; in particular, if the vector field has a component along kg, k
or key, we can (locally) redefine X to eliminate any component along krg.

A general Lagrange density in N =(2,2) superspace has the form:

K= K(gb, QE, XaXaXL,XL,XRaXR) (24)



For the four isometries listed above the corresponding invariant Lagrange densities are:

ko K (¢ + &, x, X, X1, X1, X, Xp

ky K (¢, 6, x + X, X1, X1, XR, Xp

ko K(p+ &, x + X, (¢ — 0+ x — X), X, X1, X, Xp

kr K(, ¢, x, X, Xp + X1, Xg + Xg,i(Xy — X + Xg — Xg)

)
)
)
)

In general, the isometries act on the coordinates with some constant parameter A:
0z =[Ak, 2] , (2.9)
where z is any of the coordinates ¢, x, Xy, Xg, etc.

2.2 Gauging and vector multiplets

We now promote the isometries to local gauge symmetries: the constant transformation
parameter A of (B.9) becomes a local parameter A that obeys the appropriate constraints.

§g0 =iA = DA =0
S0 =—iA = DiA=0
Sox =iA = DyA=D_A=0
5 = —iA =D A=D_A=0
6sXr =i, = DiAL =0
6 Xr =1iAp = D_Ap =0
6,X = —iAp, = DAL =0
6Xr=—iAgp = D_Ap=0. (2.10)

To ensure the invariance of the Lagrange densities (2.5), (2.§) under the local transforma-
tions (R.10), we introduce the appropriate vector multiplets. For the isometries (R.5), (.6)
these give the well known transformation properties for the usual (un)twisted vector mul-
tiplets:

5V? =i(A—A) = d,(d+0+V?) =0
VX =i(A —A) = dy(x +x +V¥) =0, (2.11)

whereas for generalized Kéhler transformations we need to add triplets of vector multiplets.
For the the semichiral isometry kpr, we introduce the vector multiplets:

§,VE =i(Ap — Ap) = 6,(Xp + X +VE) =0
59VR = Z(AR —AgR) = 59(XR + XR +VR) =0
59VI =Ar+ ]\L + Agr + ]\R = 5g(i(XL — XL + Xp — XR) —i—Vl) =0. (2.12)

! Generally, isometries may leave the Lagrange density invariant only up to a (generalized) Kéhler trans-
formation [E, E], but as our interest here is the structure of the vector multiplet, we are free to choose
the simplest situation.



We refer to this multiplet as the semichiral vector multiplet.
For the kg, isometry we introduce the vector multiplets

5, VO =i(A—A) = 5y(¢p+o+V? =0
S VX =i(A—A) = dy(x + X+ VX) =0
5V =A+A+A+A=5,(i(p—bd+x—x)+V)=0, (2.13)

and refer to this multiplet as the large vector multiplet due to the large number of gauge-
invariant components that comprise it.

2.3 N=(2,2) field-strengths

We now construct the N =(2,2) gauge invariant field-strengths for the various multiplets
introduced above.

2.3.1 The known field-strengths

The field-strengths for the usual vector multiplets are well known:

W=:iD_D,V®, W=iD_D,V?,

W=iD_D, VX, W=iD_D VX, (2.14)

Note that W, the field-strength for the chiral isometry is twisted chiral whereas W, the
field-strength for the twisted chiral isometry, is chiral.
2.3.2 Semichiral field-strengths

To find the gauge-invariant field-strengths for the vector multiplet that gauges the semichi-
ral isometry it is useful to introduce the complex combinations:

<
I

1
§(V’ +i(VE 4 VE)) = 6,V = AL + Ag,

<h
I

1 - _
§(V'+i(VL—VR)) = 0,V=AL+Ag . (2.15)

Then the following complex field-strengths are gauge invariant:

F=D,DV, F=-D,D_V,
F=D,D.V, F=-D.D_V, (2.16)
where F is chiral and F is twisted chiral.
2.3.3 Large vector multiplet field-strengths
As above it is useful to introduce the complex potentials:
1 -
V= 5[V’+i(V¢+VX)] = 5,V =A+A,
| . =
V= 5[V’+i(V¢’—VX)] =6,V =A+A. (2.17)



Because (A)A are (twisted)chiral respectively, the following complex spinor field-strengths
are gauge invariant:

G.=DV, G_.=D_ (2.18)

The higher dimension field-strengths can all be constructed from these spinor field-

strengths:
W =—-iD,D_VX=D,G_+D_G,
W =—iD;D_VX=—(D;G_+D_G,)
W =—-iD,D_V®=D,G_+D_G,
W = —iD,D_V®=—(D,G_ +D_G,)
B=-D,D_(V4+iV?)=D_G, - D,G_
B=D,D_(V' —iV®) =—-(D_G, -D,G_)
B=-D,D_(V' —iVX)=D_G; —D,G_
B=D,D_(V'+iVX) = —(D_G4 —D,G_) ; (2.19)

the chirality properties of these field-strengths are summarized below:

Field-strength Property

W, B chiral
W, B anti-chiral (2.20)
W, E twisted chiral

I/T/, B anti-twisted chiral

3. Gauge multiplets in N =(1,1) superspace

To reveal the physical content of the gauge multiplets, we could go to components, but it
is simpler and more informative to go to N =(1,1) superspace. We expect to find spinor
gauge connections and unconstrained superfields.

The procedure for going to N = (1,1) components is well-known; for a convenient
review, see [[4]. We write the N = (2,2) derivatives D1 and their complex conjugates
D4 in terms of real N = (1,1) derivatives Dy and the generators Q4 of the nonmanifest
supersymmetries,

1 , - 1 ,

Dy = §(D:|: —iQs), Di= §(D:|: +iQ+), (3.1)
and N =(1,1) components of an unconstrained superfield ¥ as ¥| = ¢, Q+ V| = ¢, and
Q.Q U =F.

3.1 The semichiral vector multiplet

We first identify the N = (1,1) components of the semichiral vector multiplet, and then
describe various couplings to matter.



3.1.1 N=(1,1) components of the gauge multiplet

We can find all the N=(1,1) components of the semichiral gauge multiplet from the field
strengths (R.16) except for the spinor connections I'y. The only linear combination of the
gauge parameters Ag, A that does not enter algebraically in (2.13) is (A, +Ar —Ag—AR),
and hence the connections must transform as:

1 _ _
ogl'+ = ZD:I:(AL + AL —Ag — Ag) (3.2)
This allows us to determine the connections as:
1 1 1 1
r, = <§Q+VL — ZD+V’>‘ , I =— <§Q_VR — ZD_V’> , (3.3)

where the D4 terms vanish in Wess-Zumino gauge. The gauge-invariant component fields
are just the projections of the N =(2,2) field-strengths (2.16) and the field-strength of the
connection I'y:

f=i(DyT_+D_Ty). (3-4)

These are not all independent-they obey the Bianchi identity:
f:z‘(IF—I‘FJrfF—fF)(. (3.5)

Thus this gauge multiplet is described by an N = (1,1) gauge multiplet and three real
unconstrained N =(1,1) scalar superfields:

d'=F+F)|, &=(F+F)|, &=i(F-F-F+F)|. (3.6)

Though not essential, the simplest way to find the N =(1, 1) reduction of various N = (2, 2)
quantities is to go to a Wess-Zumino gauge, that is reducing the N = (2, 2) gauge parameters
to a single N =(1,1) gauge parameter by gauging away all N = (1,1) components with
algebraic gauge transformations. Here this means imposing

Vi =0, (QyVh)| =2r Q-Vhl =0,
Vi =0, (@Q+VH[ =0, (Q-VH)| = —2r_ | (3.7)
Vl| =0, (Q+Vl)| =0, (Q*V,” =0,

on the gauge multiplet and
AP = AP = —AT = —AT L (Q-A)| = (Q-A")| = (Q+AT)| = (Q+AT)[ =0 (38)
on the gauge parameters. This leads directly to:

(Q+Q-VH)|=2i(d" —d*) , (QQ-VH)|=2i(d" +d") , (Q+Q-V)|=2id" . (3.9)



3.1.2 Coupling to matter
We start from the gauged N =(2,2) Lagrange density:

Kx = Kx (XL—FXL —{—VL,XR—FXR—FVR,i(XL—XL—FXR—XR)—{—V,) .

In the Wess-Zumino gauge defined above, we have

Xrr) =Xyl

and N =(1,1) spinor components:

(QXp)|=iDy Xp+ T4, (Q-Xp)[=1v-,
(Q-Xp)|=iD_Xp—T_ , (Q+Xp)| =14 .

Then for the tuple X* and the isometry vector k' defined as
k' = kg = (i,—i,—i,i),
X' = (X1, X1, Xg, XR),
we write the gauge covariant derivative as it appears in [E]
ViXi =Dy X' —Tik".
We can compute

(Q+Q-Xyp)| = iDyyp_ +i(d" —d°) + d°
(Q+Q-Xg)| = —iDyyp_ +i(d +d*) +d* .

Using

P K . K

; ; K
0X10XI R =0

dXiaXT oXioxT VEL

we obtain the gauged N =(1,1) Lagrange density
EyViX'V_ X7 + K;L'0d®,

with:
17— 1
—i il
1 il

-1 —11

L:

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Here E = 1(g + B) in the reduced Lagrange density is that same as for the ungauged

2
o-model [[[4], [[§].



3.1.3 The vector multiplet action

Introducing the notation
IFZ = (IF7 F? F’ IE‘) ) dz = (f7 d/\17d/\27d/\3)7 (3'19)

and using the (twisted)chirality properties

D,F=D,F=D,F=D_F=D,F=D_F=0, (3.20)
we find
(Q+F)| = Ju'; M7y (Dyd"), (3.21)
with
—i20—i
1] i20 i
M==1" 1| UL = diag(i, —i, +i, Fi) . (3.22)
4 —102 1
i02—i

Starting from an N =(2,2) action:

Sy = / d*€D.D_Q,Q_ <aIFfF - bﬁ’) (3.23)

we write the reduction to N =(1,1) in terms of the gauge-invariant N =(1,1) components
d':
1 . n
Sx=3 /d2§ D,D_ <D+dl D_d g,j) : (3.24)

where
a+b 0 0a-—0»
1 0 4a 0 O
9781 0 04 o0

a—b0 0 a+bd

(3.25)

To obtain real and positive definite g we require ab > 0 which yields one N =(1,1) gauge
multiplet and three scalar multiplets. In particular, when a = b, we find the usual diagonal
action.

Other gauge-invariant terms are possible; these are general superpotentials and have
the form

Sp = / iD,D_ Py (F) + / iD,D_ Py (F) + / iD, D_ Py(F) + / iD,D_ Po(F), (3.26)

where P are holomorphic functions. These terms reduce trivially to give:
1. ) - 1 ) -
Sp = 2/iD+DRe <P1 <§d1 - i(f - d3)> - P2<§d“2 - i(f — d3)>> . (3.27)

Particular examples of such superpotentials include mass and Fayet-Iliopoulos terms.



3.1.4 Linear terms

To perform T-duality transformations, one gauges an isometry, and then constrains the
field-strength to vanish [0, [[J]. We will discuss T-duality for generalized Kéhler geometry
in detail in [1d); it was introduced (without exploring the gauge aspects) in [[Ld], [[. Here
we describe the N =(2,2) superspace coupling and its reduction to N =(1,1). We constrain
the field-strengths to vanish using unconstrained complex Lagrange multiplier superfields
0,0

Liinear = VF + UF + UF + UF ; (3.28)
integrating by parts, we can re-express this in terms of chiral and twisted chiral Lagrange
multipliers ¢ = D, D_¥, y = IDLJIL@ to obtain

ﬁlinear = ¢V + éV + Xv + X@ (329)
This reduces to an N =(1,1) superspace Lagrange density (up to total derivative terms)

Linear = ¢(id°> — 2d" +if) + ¢(id® + 2d" +if)
+ x(id® 4 2d — if) + x(id®> — 24> — if), (3.30)

where ¢, ¢, x, X are the obvious N = (1,1) projections of the corresponding N = (2,2)
Lagrange multipliers. When we perform a T-duality transformation, we add this to the

Lagrange density (B.17).
3.2 The large vector multiplet

We now study the N =(1,1) components of the large vector multiplet.

3.2.1 N=(1,1) gauge invariants

Starting with the eight N = (2,2) second-order gauge invariants (R.19), we descend to
N =(1,1) superspace and identify the N =(1,1) gauge field-strength.

Imposing the condition that the N =(1,1) gauge connection transforms as

5,As = %Di(/:\—i-]\—/_\—A), (3.31)
we find the quantities
Ay = - Gm(vd’ - VX))' = <§Q+<V - V)) '
A= GQ—(W’ ¥ VX))' - GQ-W - V)) ‘; (3:32)

of course, any gauge-invariant spinor may be added to A4. It is useful to introduce the
real and imaginary parts of G4:

E4 = (Re(G)|, Im(Gy)]) - (3.33)



These form a basis for the N = (1,1) gauge-invariant spinors. The field-strength of the

connection Ay

f=iDiA_+D_A,) =i(Q+E% + Q_E2)

is manifestly gauge invariant. The remaining N =(1,1) gauge-invariant scalars are:

ql = Z(Q*Ei - +E£) )
2 i =l =1

P =i(Q 5L+ Q1)
¢’ =i(Q-E5 - Q4E2).

The decomposition of the N =(2,2) invariants W, B is

W —i—i 11 0 1 0 i iD=
B i—i—-11 1 0 i 0 iD_EL
W i i 11 0 1 0—i iD{E?
[ Bf|_1|—=i i-11 1 0—i 0] [iD-E}
4 2 —i—-i-11-1 0 0—i gt
B i—i 11 0-1-i 0 ¢
1474 i i-11-1 0 0 i g3
B i i 11 0-1 i 0 f

3.2.2 Matter couplings in N=(1,1) superspace
We start from the gauged N =(2,2) Lagrange density:

Ky (¢+&+V¢,x+x+vx,z‘(¢—<5+x—x)+v’) .
We reduce to N =(1,1) superfields, which in the Wess-Zumino gauge

V=0, VX=0, V|=0,

are simply
ol =9,
xl=x,
(Q+9)| = +iDyop — (E}F + 251) — Ay,
(Q+x)| = +iDix — (L +i27) + Ay,
(Q_¢)| = +iD_¢— (BL +i22) — A_,
(Q-x)| = —iD_x + (EL. —iZ%) — A_

It is useful to introduce the notation
SDZ = (¢? q_b’ X? X)
and the covariant derivatives

Vip' =Dig' + ALk .

,10,

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)



This gives
Qitpi = Jiijvitpj + EliJ:Fij/{?j + Eiﬂij/{:j (3.42)

and

2Q+Q_¢" = DL (TI";V_y¢ — =L k' — 222 J_ ", k7)

D_(TI';V 1 ¢? — EL K — 222 J 1 kT) + 217 6™ (3.43)
where o = 1,2, 3 and
20 i
N il 20—i
L==5145 ; (3.44)
02 —i

The N = (1,1) superspace Lagrange density is (after integrating by parts and using the
isometry)

—1 (vwi (I, V¢! - QE%J_Jlkl) + (Hikm@k — QEiJJ,?k:k) V—W’)
+ (J1 VP + EL IR + B3I ER) (J_9, Vol + EL Tk + 2211 k)
+ K;L',G® . (3.45)

[':Kij

The large vector multiplet has the gauge-invariant spinors Ej};; it is useful to isolate their
contribution to expose the underlying N =(1,1) gauged nonlinear o-model. We define the

matrices:
1
By = —Kij (20" J 7 — 1167 — 117,68, (3.46)
K J_tkFJ_d,
Eyq = / 3.47
Al ( Kij (Jyikbod, +H2kkkj i) (3.47)
Bya = ( Kij i J 0k K (J,Jlk’(szk + J+ikHjlkl)) (3.48)
K. k l K HZ k i 1.0
Eap— ik kJ+ 1k rk kJ+ lkz (3.49)
KijJ_tpkFTI k K G ERT
We find
L= (B4 + V@' BioE™) Bap (2 + EPP Ep;V-¢)
+Vi¢' (Bij — EiaBE*PEgj) V_¢ + K;L'0G" (3.50)
with E4B the inverse of F4p.
3.2.3 The vector multiplet action
A general N =(2,2) action for the large multiplet can be written as
S, = /d2§D+D_Q+Q_ (F'Fig;; + GAGPmag) | (3.51)

— 11 —



where the ranges for indices are 7,5 = 1,...,8 ; AB = 1,2, and the spinor invariants were
arranged into tuples

G4 = (G+,Gy) . (3.52)

Other terms of the type (D4, D+)(G,G+) could be integrated by parts to give the W and
B invariants. One could also add superpotential terms.

This action can be reduced to N =(1,1) using the block-(twisted)chirality of F' and
the semichirality of G. In general, one finds terms with higher derivatives; it does not seem
possible to find a sensible kinetic action, but we leave a complete analysis for future work.

3.2.4 Linear terms

As discussed above for the semichiral vector multiplet, linear couplings of unconstrained
Lagrange multiplier fields multiplying the field-strengths are needed to discuss T-duality.
In N =(2,2) superspace, we constrain the field-strengths G to vanish with unconstrained
complex spinor Lagrange multiplier superfields W:

Liinear =1 (V4G_ +V_G4 +V,G_+V¥_G_) . (3.53)

When we integrate by parts and define semichiral Lagrange multpliers X7, p = —i[ﬁ)i\IlqE,
we find B

Elinear = XLV + XLV + XRV + XRV . (354)

Reducing to N = (1,1) superspace, and defining N = (1,1)-components for the Lagrange
multipliers as in (B.11), (B.13) we find

1

['linear = w— (ZE}F - Ei) + §XL (((jQ + (jl) + Z(f + (jg))

o (B} ) 4 oK (<@ ) +ilf + )

+ g (2L + E2) + = XR (—(@* — ¢ —i(f —dY)
= — 12 2 . . .
+ ¢y (iB) —iE5) + §XR ((¢*=3g" ) —i(f—d") - (3.55)
We can easily integrate out ¢+ and their complex conjugates; this eliminates Ei from the
action. We are then left with the usual T-duality transformation as we shall discuss in [[L0].

Note added. As we were completing our work, we became aware of related work by
S.J. Gates and W. Merrell; we thank them for agreeing to delay their work and post
simultaneously.
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